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Preparation of Eigenstates

Hyp) = Aly)

- In optimization, the lowest-energy state of H has large amplitude in a
basis state that encodes the solution to the problem [E. Farhi, et.al.,
Nishimori, et.al., etc.]

- In physics simulations, the lowest-energy state is useful to compute a
guantum-phase diagram and understand states of matter such as
projected entangled pair states (PEPS) [Verstraete & Vidal]

- In quantum computing, the lowest-energy state has large amplitude in
the quantum state output by a quantum circuit [D. Aharonov & D.
Gottesman, et.al.] with additional results in quantum complexity

v

Fast guantum methods to compute expectation values of observables in
eigenstates of H are desirable. Such methods usually result in speedups.




Adiabatic State Transformations 4

Goal: Transform ‘1/)(0)>, the eigenstate of H(0), into ‘1/)(1)>, the eigenstate of H(1).

- In classical computation, the AST problem may be solved by means of probabilistic
methods such as quantum Monte-Carlo

- In quantum computation, the AST problem may be solved by means of quantum
adiabatic evolutions

H(),

(D))

Prepare \w(0)>
Evolve with H(g) using an schedule g(z)
g(0)=0, g(T) =1, g(r) <<1

H(g), y(g)

H(),

Y(0))
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Adiabatic State Transformations o

Goal: Transform |y(0)), the eigenstate of H(0), into |y(1)), the eigenstate of H(1).

- In classical computation, the AST problem may be solved by means of probabilistic
methods such as quantum Monte-Carlo

- In quantum computation, the AST problem may be solved by means of quantum
adiabatic evolutions

9(1)) = ~iH (g(1)|p(1))




Adiabatic Approximations in Quantum Mechanics Q

:>T

/The AST problem can be soh@
if [Boixo,Knill,RDS (2010)]
min, A(g)

L

= [lp(r) - [w()] = &

g(t)=e

Path length:

e.min, A(g)

The evolution can be simulated by a quantum circuit of size
(almost) linear in T using product formulas [DW Berry, Cleve, ..

cost: C(T) o« T




Spectral Gap Amplification Problem (GAP)

The success of AQC is based on heuristics...

The spectral gap amplification problem is formulated
so as to obtain *provable® quantum speedups.




Spectral Gap Amplification Problem (GAP)

The generic cost C(T) of quantum algorithms that prepare the
eigenstate depends on the inverse power of the spectral gap

{

Given H with eigenstate |1/J> and gap A

Can we construct H', with same eigenstate |1/J>, butgap A'>>A?

/@&No

Quantum speedups that depend on
the magnitude of the amplification



Spectral Gap Amplification Problem (GAP) 3

Some requirements....

We assume that H is H = EHk and that we have access to a black box
k

k

expi—isH, }

v
11

Def ..
The cost C(t) of evolving with H for time ¢ is the number of calls to the black box

to approximate the evolution exp{-i.t. H} — C(t) < c |t|*" [DW Berry, et.al. (2007)]

Requirement: C(z) = C'(t), the cost of evolving with H' for time ¢

H'XAH; A >>1




GAP: Frustration-free Hamiltonians :

T )

hm. 1 (quadratic gap amplification):

L
If H = EHk satisfies a frustration- free property, then A' € Q(\/A/L)

\_ <=l Wy
/\/\/
Def.: H is frustration free if

(Hk)2 =TI, — Projector; H=0; IT|y)=0V k.

/\_’/\/
Proof (sketched)

L
.Build the unitary U =1 - 22Hk ®|k)(k| [Ucan be implemented with unit cost!

k=1

.Define the ancillary state |u) = —E|k> ; P =|wul

— PUP=(1-2H/L)®P




GAP: Frustration-free Hamiltonians

1y
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hm. 1 (quadratic gap amplification):

L
If H = EHk satisfies a frustration- free property, then A' € Q(\/A/L)

k=1

\

/

/\/\/
Def.: H is frustration free if

(Hk)2 =TI, — Projector; H=0; IT|y)=0V k.
/\—/\//

Proof (sketched)

— PUP=(1-2H/L)QP

MfHy, ) =Afy,) = 1-24,/L=(y,|®@(uUly,)®|u) = cos(ar,) ~1 - (a)* /2

Goal: Build H’ so that its eigenvalues are the sines of the angles




GAP: Frustration-free Hamiltonians hlJ

H'=UPU - P
{‘w1>®‘“>’U‘wj>®‘M>} e{‘1/JJ->®‘M>,U‘1/Jj>®‘M>}

1)




GAP: Frustration-free Hamiltonians QJ

H'=UPU - P
{‘%>®‘M>,U‘IP]->®‘M>} e{‘¢j>®‘ﬂ>,U‘¢j>®‘M>}

p 1)

,U‘w1>®‘“>

X,

>

};U‘I/’)@‘W



GAP: Frustration-free Hamiltonians ngJ

H'=UPU - P
{‘w1>®‘“>’U‘wj>®‘M>} e{‘1/JJ->®‘M>,U‘1/Jj>®‘M>}




GAP: Frustration-free Hamiltonians




GAP: Frustration-free Hamiltonians @

H'=UPU - P
{‘UJJ->®‘M>,U‘IP]->®‘M>} e{‘¢j>®‘ﬂ>,U‘¢j>®‘M>}

L)

H"lpj>®‘u> %—sin(aj)cos(aj)‘lp»@‘m + sinz((xj)‘J_j>

“; UPU‘UJJ'>®‘M>

< >

_P“/’j>®‘“>




GAP: Frustration-free Hamiltonians N

H'=UPU - P

;) ®|u) 1))

' —sinz(aj) sin(a ;)cos(a ;)
—_—

sin(a ;)cos(ct ;) sinz((xj)

New eigenvalues: =+ SiIl(OCJ.) =~ i,\/)\.j /L
H"%>®‘M> =0

‘Gap amplification!! ‘ [Szegedy, Ambainis,..]




GAP: Frustration-free Hamiltonians W,

Spectrum of H Spectrum of H’
A ~JA, [ L
A’Z
A ~~A/L
A=A
A’O = O —> A"O =

2,




GAP: Frustration-free Hamiltonians R

Implementation cost

H'=UPU-P=H,+H,

—expi—-iH't} = exp{—-iH,s, }expi—iH,s, }...expi—iH s }exp{-iH,s, }
= Uexp{—iPs, }Uexp{iPs,}..Uexp{-iPs, }Uexp{iPs, }

m e O] x*y) [DW Berry, et.al.]
meEO[ ! log(l1 )]

[R Cleve, S Gharibian, and RS, in preparation]

The evolution for time # can be simulated with (almost) a linear number
of calls to the black box V
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GAP: Other Constructions

H'=UPU - P
H'=i(UP - PU)

w2 LS, o[kl o)k]

Improved constructions
for the quantum adiabatic
simulation of quantum
circuits:

A —=O(/L"*) [S. Boixo]




GAP: Optimal amplification for frustration-Free Hamiltonians 0

[Thm. 2 (optimal amplification): A'E @(\/K) }

Proof (main idea):
Reduce instances of SEARCH to GAP

Prove that if a better-than-quadratic amplification for FF Hamiltonians were
possible, then SEARCH could be solved faster than known possible.

L i
Prepare (efficiently) |s
HX=EHkECNXN P y)|s)
k=1 @
Measure ‘wx>

=S e,

Measure in {|Y>}

(slwy)eo; |s

—0 @
<X‘WX>EO(1) Obtain | X) with large Pr.




GAP: Optimal amplification for frustration-Free Hamiltonians 4

[Thm. 2 (optimal amplification): A'E @(\/K) }

Proof (main idea):
Reduce instances of SEARCH to GAP

Prove that if a better-than-quadratic amplification for FF Hamiltonians were
possible, then SEARCH could be solved faster than known possible.

L L] L]
Prepare (efficiently) |s
H, = E:ercm Y
k=1

Measure |1, ) |C S O(I/A)l
1 N-1
R, ¢

Measure in {|Y>}

(slwy)eo; |s

—0 @
<X‘WX>EO(1) Obtain | X) with large Pr.




GAP: Optimal amplification for frustration-Free Hamiltonians ?

[Thm. 2 (optimal amplification): A'E (H)(\/K) ]

Proof (main idea):
Reduce instances of SEARCH to GAP

Prove that if a better-than-quadratic amplification for FF Hamiltonians were
possible, then SEARCH could be solved faster than known possible.

Prepare (efficiently) |s>

~
Measure ‘WX> ‘C zO(l/A)l
> _ LN_1|Y> @

Measure in {|Y>}

L
H, - S, ec™
k=1

(slwy)eo; |s

—0 @
(Xlyx) EOM) Obtain | X) with large Pr.




GAP: Optimal amplification for frustration-Free Hamiltonians &

[Thm. 2 (optimal amplification): A'E (H)(\/K) ]

Proof (main idea):
Reduce instances of SEARCH to GAP

Prove that if a better-than-quadratic amplification for FF Hamiltonians were
possible, then SEARCH could be solved faster than known possible.

L i

Prepare (efficiently) |s
H, =31, ec™ s """
k=1

Measure |1, ) ‘C - O(I/VZ)‘

(s ) €O ; |5 Measure in {|Y>}

>=WY

—0 @
(Xlyx) EOM) Obtain | X) with large Pr.




GAP: Optimal amplification for frustration-Free Hamiltonians

[Thm. 2 (optimal amplification): A'E @(\/K) J

Proof (main idea):

Reduce instances of SEARCH to GAP

‘ceo/n)

In addition, we require that H is such that




GAP: Optimal amplification for frustration-Free Hamiltonians &

[Thm. 2 (optimal amplification): A'E @(\/K) J

Proof (main idea):

Reduce instances of SEARCH to GAP

SEARCH can be solved with

CEOo(1//A
‘ ( )‘ O(l/\/Z) oracles

In addition, we require that H is such that

Find H so that A€ O(1/N)

Grover's Solves SEARCH in
optimal time O(\/ﬁ)

oracle

Limits the gap amplification!




GAP: No Amplification in General

El'hm. 3 (no general amplification): Ingeneral, A'E O(Aﬂ

Proof (main idea):

Reduce instances of SEARCH to GAP

L
Find H = » A, so that A€O(1/A/N)
k=1

Solves SEARCH in
optimal time O(\/ﬁ)

Limits the gap amplification! |

28



Applications of GAP: Quantum speedups of Monte Carlo for COPs

MC: A quick review

i. Sample from the initial distribution I,
ii. Construct and apply a stochastic process S —Pr(o10")

iii. Sample from IT, = §"I1;

A convergence Lemma: LetII be the fixed point of §, i.e. SII=1I1.Then,

ianO(l/AS) is the mixing time, [T, —H‘ <l1/e.




Applications of GAP: Quantum speedups of Monte Carlo for COPs

From a stochastic matrix to a frustration-free Hamiltonian:

H —{olH|c) =8, —+/[Pr(cl0").Pr(c'l0)

= Y JII_|o
‘w0> E o0) Using H', we can sample fromI1," by
= H- ;aknk _preparing a state close to “/)o> and
H‘UJ > —0 [frustration free] measuring in the computational basis.
o) =
A, =Ag

Methods to evolve ‘adiabatically’ at cost that depends on the inverse
gap only (not higher powers) exist [RS, et.al., PRL’08]

[c()st: CEO(1/+/Ay) <<n}




GAP: Summary &

- We introduced the GAP problem that resulted in (quadratic)

guantum speed ups: gap amplification of FF yields quantum
speedups of classical Monte Carlo Methods [RS,et.al.,PRL'08]




GAP: Summary R

- We introduced the GAP problem that resulted in (quadratic)
guantum speed ups: gap amplification of FF yields quantum

speedups of classical Monte Carlo Methods [RS,et.al.,PRL'08]

- We proved that the quadratic amplification is optimal for FF




GAP: Summary %

- We introduced the GAP problem that resulted in (quadratic)
guantum speed ups: gap amplification of FF yields quantum
speedups of classical Monte Carlo Methods [RS,et.al.,PRL'08]

- We proved that the quadratic amplification is optimal for FF

- We gave local constructions for FF




GAP: Summary %0

- We introduced the GAP problem that resulted in (quadratic)
guantum speed ups: gap amplification of FF yields quantum
speedups of classical Monte Carlo Methods [RS,et.al.,PRL'08]

- We proved that the quadratic amplification is optimal for FF

- We gave local constructions for FF

- We proved that no gap amplification is possible in general




GAP: Summary 31

- We introduced the GAP problem that resulted in (quadratic)
guantum speed ups: gap amplification of FF yields quantum
speedups of classical Monte Carlo Methods [RDS,et.al.]

- We proved that the quadratic amplification is optimal for FF

- We gave local constructions for FF

- We proved that no gap amplification is possible in general

Other interesting results in arXiv: 1110.2494




GAP: Some Interesting Questions

- Other implications in quantum complexity? Speedups?

- Can we amplify the gap even further by allowing increases in the
number of systems?

THANK YOU!



Thm. 3 (optimal amplification):
A'€6(VA)
N

Proof (sketched)




GAP: Optimal amplification for frustration-Free Hamiltonians

Thm. 3 (optimal amplification): A
A'€6(VA)
N /

Proof (sketched)

&0



GAP: Optimal amplification for frustration-free Hamiltonians 10

\
Thm. 3 (optimal amplification):
A'€6(VA)
o /
Proof (sketched) N> Goal:

Build a frustration-free Hamiltonian
whose lowest-eigenvalue
eigenstate has large amplitude in
the marked vertex and in the
uniform superposition state.

The search p em can be solved by
first preparing the uniform
superposition state, then measuring
the lowest-eigenvalue state, and
then measuring in the
computational basis

cost: T ~ l
A



GAP: Optimal amplification for frustration-Free Hamiltonians

Thm. 3 (optimal amplification): A
A'€6(VA)
o /
Proof (sketched) ‘N>
1
)= ZID-IM)]
o Yo




